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A novel chiral electron-hole (CEH) pairing mechanism is proposed to account for
non-BCS superconductivity. In contrast to BCS Cooper pairs, CEH pairs exhibit a
pronounced affinity to antiferromagnetism for superconductivity. The gap equations
derived from this new microscopic mechanism are analyzed for both s- and d-wave su-
perconductivity, revealing marked departures from the BCS theory. Unsurprisingly,
CEH naturally describes superconductivity in strongly-correlated systems, necessi-
tating an exceedingly large coupling parameter (λ > 1 for s-wave and λ > π/2

for d-wave) to be efficacious. The new mechanism provides a better understand-
ing of various non-BCS features, especially in cuprate and iron-based superconduc-
tors. In particular, CEH, through quantitative comparison with experimental data,
shows promise in solving long-standing puzzles such as the unexpectedly large gap-
to-critical-temperature ratio ∆0/Tc, the lack of gap closure at Tc, superconducting
phase diagrams, and a non-zero heat-capacity-to-temperature ratio C/T at T = 0

(i.e., the “anomalous linear term”), along with its quadratic behavior near T = 0 for
d-wave cuprates.

I. INTRODUCTION7

Magnetism has traditionally been viewed as antagonistic to conventional Bardeen-8

Cooper-Schrieffer (BCS) superconductivity [1]. However, many non-BCS superconductors9

discovered in the past few decades have demonstrated the opposite, showing that strong10

magnetism is actually very conducive to non-BCS superconductivity. In particular, many of11

them are derived from parent compounds with antiferromagnetic properties, and some even12

exhibit cases of the coexistence of superconductivity and antiferromagnetic order [2]. The13

two primary classes of high Tc superconductors, cuprate [3] and iron-based (FeSC) [4] super-14

conductors, both have their roots in antiferromagnetic compounds, with cuprates originating15

from antiferromagnetic Mott insulators and FeSCs from antiferromagnetic metals.16

The coexistence of superconductivity and long-range antiferromagnetic order was actually17

discovered a long time ago in the late 1970s [5, 6]. The intimate relationship between18

antiferromagnetism and superconductivity has been observed in many different types of19

non-BCS superconducting materials, including heavy fermion compounds [7, 8], organic20

superconductors such as quasi-1D TMTTF/TMTSF type and quasi-2D BEDT-TTF type21

[9], and doped fullerenes [10].22

The significance of antiferromagnetic order may provide crucial clues for solving the23

puzzles of non-BCS superconductivity. In particular, this leads to our proposal of a new24
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pairing mechanism via chiral electron-hole (CEH) condensation in this work. The presence25

of strong antiferromagnetic correlations is critical, as it guarantees that chirally opposite26

electron and hole states are next to each other, making the chiral condensation more feasible.27

This may explain why both high Tc superconducting classes (cuprates and FeSCs) are based28

on antiferromagnetic compounds.29

In order to fully comprehend these superconductors, it is imperative to not only find30

their correct pairing mechanism, but also to identify their pairing symmetry. Angle-resolved31

photoemission spectroscopy measurements have indisputably proven that cuprates display32

a dx2−y2 gap symmetry [11]. Although studies on the pairing symmetry of FeSCs that were33

discovered much later are not as conclusive, the majority consensus suggests that they most34

probably exhibit some type of s-wave pairing symmetry [12].35

In this paper, we apply the mean-field approach to derive superconducting gap equations36

using the new pairing mechanism. Detailed analysis of the equations for both s-wave and37

d-wave superconductivity will reveal various features that differ from BCS. Furthermore, we38

will address puzzles concerning superconducting gap and heat capacity and present several39

examples that directly compare CEH predictions with cuprate and FeSC data. Natural units40

(ℏ = c = kB = 1) are utilized throughout the work for convenience.41

II. CHIRAL ELECTRON-HOLE (CEH) PAIRING42

We will closely follow the Bogoliubov-BCS formalism as described in Ref. [13] for the43

mean-field theory of BCS superconductivity, albeit with a new microscopic superconducting44

mechanism. First of all, we will begin with a four-fermion interacting Hamiltonian for the45

simple straightforward case of s-wave CEH pairing,46

H =
∑
kσ

ξkc
†
kσckσ − V

∑
kk′

c†kLc−kRc
†
−k′Rck′L (1)

where we use left and right chiralities instead of the conventional up and down spin notation47

to emphasize the significance of chirality in this study.48

Note that similar four-fermion interactions were also used in the Nambu-Jona-Lasinio49

(NJL) mechanism [14] in particle physics for quark condensation and spontaneous symmetry50

breaking, borrowing the idea from the earlier BCS superconductivity work [1]. Such ideas51

are also crucial in the recently developed mirror matter theory, which aims to address many52

puzzles in fundamental physics and cosmology [15–19]. In particular, the concept of staged53

chiral quark condensation [16, 19, 20] has directly motivated this work.54

The most significant difference in Eq. 1 from the BCS Hamiltonian is that, by borrowing55

back the idea of the NJL model, the four creation and annihilation operators are arranged56

to incorporate the proposed condensation mechanism of chiral electron-hole pairs instead57

of the conventional Cooper pairs. Specifically, the superconducting pairs are formed from58

electrons and holes with exactly opposite chiralities, a configuration readily achievable in59

adjacent sites of antiferromagnetic materials, which also explains the non-local behavior of60

the CEH mechanism. We can then define a similar order parameter ∆ based on the CEH61

condensation mechanism,62

∆ = V
∑
k

⟨c†kLc−kR⟩ , ∆∗ = V
∑
k

⟨c†−kRckL⟩ . (2)
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FIG. 1. Different pairing and conducting mechanisms between CEH and BCS are shown.

Upon initial instinctive consideration, one might assume that CEH pairs cannot conduct63

electric currents due to their zero net charge. However, the conduction mechanism of CEH64

pairs is fundamentally different from that of Cooper pairs, as illustrated in Fig. 1. While the65

Cooper pair conducts currents through center-of-mass motion, the CEH pair achieves this66

through relative motion. On a macroscopic scale, both mechanisms yield equivalent 2e-like67

currents, resulting in comparable outcomes in most macroscopic phenomena, including the68

Josephson effect.69

Another important aspect concerns the pairing symmetry. In CEH condensation, the70

pairs must be spin singlets owing to its chiral nature (like the Higgs in particle physics),71

leading to symmetric orbital wave functions. Consequently, the resulting pairing symmetry72

can only be s-, d-, or g-wave.73

Considering the CEH condensation, the Hamiltonian of Eq. 1 then takes the bilinear74

form,75

H =
∑
k

(
c†kL, c†−kR

)( ξk −∆∗

−∆ ξk

)(
ckL
c−kR

)
. (3)

We can then diagonalize the Hamiltonian through the Bogoliubov transformation [21] as76

follows,77

U †
(

ξk −∆∗

−∆ ξk

)
U =

(
E+

k 0
0 E−

k

)
, U =

(
uk v∗k
−vk u∗

k

)
(4)

where the eigenvalues are,78

E±
k = ξk ± |∆|, (5)

in contrast to E±
k = ±

√
ξ2k + |∆|2 in BCS. The corresponding emergent Bogoliubov quasi-79

particles (energy eigenstates) are therefore defined as follows,80 (
bk1
b−k2

)
= U †

(
ckL
c−kR

)
(6)

where the quasi-particle operators b and b† satisfy the same anticommutation relations as81
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fermions. Applying the unitarity condition of |u|2 + |v|2 = 1, we arrive at the solution,82

|u| = |v| = 1√
2

(7)

which is remarkably different from the BCS findings. To facilitate later discussion, we can83

introduce a phase factor by setting u/v = eiδ, which gives u∗v = 1/2e−iδ.84

Using the above solution, we obtain the following condensation relation85

⟨c†kLc−kR⟩ = u∗v(⟨b†−k2b−k2⟩ − ⟨b†k1bk1⟩) (8)

where, at finite temperature, the quasi-particles follow Fermi-Dirac statistics, that is,86

⟨b†k1bk1⟩ =
1

eE+/T + 1
, ⟨b†−k2b−k2⟩ =

1

eE−/T + 1
. (9)

Note that both the BCS and CEH mechanisms for superconductivity are similar to those87

for neutrino or neutron–mirror neutron oscillations [15, 18] in the sense of reaping the fruits88

of the misalignment between interaction and energy eigenstates.89

Then, we can obtain the s-wave CEH gap equation from Eqs. 2, 5, 8, and 9,90

∆ =
V

2
e−iδ

∑
k

sinh(|∆|/T )
cosh(|∆|/T ) + cosh(ξk/T )

= V ρF e
−iδ

∫ ω∗

0

dξ
sinh(|∆|/T )

cosh(|∆|/T ) + cosh(ξ/T )
(10)

where ρF denotes the density of states at the Fermi energy and the summation is replaced91

by an integration over the energy shell (±ω∗) near the Fermi surface where the formation92

of superconducting pairs occurs. It is worth noting that ω∗ bears resemblance to the Debye93

energy ωD in the BCS theory. However, we will elaborate later on the more significant94

impact of ω∗ within the CEH mechanism.95

By working out the integration and introducing a dimensionless coupling parameter λ =96

V ρF and a positive energy gap ∆ defined by ∆ = ∆e−iδ, the s-wave gap equation can be97

simplified as,98

∆(T ) = 2λT tanh−1

(
tanh(

∆(T )

2T
) tanh(

ω∗

2T
)

)
= λT log(

e(∆(T )+ω∗)/T + 1

e∆(T )/T + eω∗/T
). (11)

CEH Gap equations with more intricate orbital pairing symmetries can be calculated by99

considering an angular-dependent superconducting energy gap ∆k = ∆γk. For a d-wave gap100

symmetry of dx2−y2 in cuprate superconductors, we have the symmetry factor γk = cos(2φ).101

A d-wave CEH gap equation can then be derived with ease,102

∆(T ) =
8λT

π

∫ π/4

0

dφ tanh−1

(
tanh(

∆(T ) cos(2φ)

2T
) tanh(

ω∗

2T
)

)
. (12)

If we further consider ∆ as an emergent scalar field (akin to the Higgs field in parti-103

cle physics), its self-interactions will lead to the same phenomenological Ginzburg-Landau104

theory as derived in BCS superconductivity.105
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III. ANALYSIS OF CEH GAP EQUATIONS106

First, we should emphasize that both s-wave and d-wave gap equations in CEH (Eqs. 11107

and 12) are dramatically different from those derived in the BCS theory. In particular, the108

two parameters of ω∗ and λ play a crucial role in distinguishing the CEH mechanism from109

BCS.110

To ensure that quasi-particles have positive energies (or negative energies for correspond-111

ing “anti-particles”) as in Eq. 5, we establish the following superconducting requirement112

under the CEH model,113

ω∗ ≤ ∆(T ) (13)

which is entirely different from that of BCS. In BCS, positive energies are guaranteed as114

E+
k =

√
ξ2k + |∆|2, and thus no constraint on the Debye energy ωD is necessary. In addition,115

it should be noted that the coupling parameter λ in CEH must be very large (i.e., λ > 1 for116

s-wave and λ > π/2 for d-wave as presented below), as opposed to the small parameter of117

λ ≪ 1 used in BCS. This implies that CEH is naturally suited for modeling superconductivity118

in strongly-correlated electron systems while BCS is more appropriate for the weak-coupling119

limit.120

The condition of Eq. 13 suggests that typically ∆(Tc) = ω∗ ̸= 0, meaning that the121

superconducting gap does not necessarily close at the critical temperature Tc, which is122

distinct from BCS. More details are presented below for both s- and d-wave cases.123

A. s-wave results124

The CEH s-wave gap equation (Eq. 11) can also be written as,125

x1/λ(x+ w) = wx+ 1 (14)

where x = exp(∆(T )/T ) > 1 and w = exp(ω∗/T ) > 1. The superconducting condition of126

Eq. 13 requires that x > w. We can then easily solve it for λ,127

λ =
log(x)

log(wx+1
w+x

)
=

log(x)

log(x) + log(w+1/x
w+x

)
> 1 (15)

which means that CEH addresses a strongly-correlated system.128

In the limit of T → 0, we obtain the gap at zero temperature,129

∆0 ≡ ∆(T = 0) = λω∗ (16)

and the gap equation can then be simplified at the critical temperature Tc as,130

2 exp(
λ+ 1

λ2

∆0

Tc

) = exp(
2

λ

∆0

Tc

) + 1. (17)

This allows us to plot the solution of ∆0/Tc as a function of λ as shown in Fig. 2 with131

its two asymptotic limits: two as λ → ∞ and log(2)λ2/(λ − 1) as λ → 1. Note that this132

ratio is always larger than two and can become much larger at smaller λ (or lower doping133

levels), in contrast to the value of about 1.764 in BCS for s-wave superconductors. To be134

clear, the ratios shown as arrows in the plot represent only the weak-coupling limit in BCS135
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FIG. 2. ∆0/Tc as a function of λ is shown for both s-wave and d-wave CEH superconductivity.
BCS values in the weak-coupling limit are also displayed for comparison. The two dotted lines
depict ∆0/T0 corresponding to their respective CEH results.
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FIG. 3. The ∆(T )/∆0 ratios as a function of T/Tc are shown for s-wave CEH superconductivity.
The gap only vanishes at Tc when λ → ∞, in which case the curve nearly overlaps with that of
BCS.

and higher ∆0/Tc ratios are possible in extended models using stronger electron-phonon136

couplings. For simplicity, further comparisons to BCS in this paper will also be restricted137

to its weak-coupling limit unless stated otherwise.138

Fig. 3 shows the ∆(T )/∆0 ratios as a function of T/Tc for various λ values, which are139

numerically calculated from the gap equation. In Fig. 3, it is evident that the supercon-140

ducting gap in CEH, in general, does not close at the critical temperature Tc, resulting in141
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∆(Tc) = ∆0/λ according to Eq. 16. It only closes in the extreme case of λ → ∞, where the142

relation between ∆(T )/∆0 and T/Tc can be simplified as,143

T

Tc

=
∆(T )/∆0

tanh−1(∆(T )/∆0)
(18)

which nearly overlaps with the results from BCS as shown in Fig. 3. It is worth pointing out144

that, in this case, BCS extensions using strong electron-phonon couplings give very similar145

results to those obtained at its weak-coupling limit [22].146

On the other hand, the superconducting gap does close at a higher temperature T0 > Tc.147

It can be calculated from the gap equation using the condition of ∆(T0) = 0,148

T0 =
ω∗

2 tanh−1(1/λ)
=

ω∗

log(λ+1
λ−1

)
(19)

which, though higher, follows a similar trend as Tc as demonstrated in the following section.149

Another ratio can be calculated simply as follows,150

∆0/T0 = 2λ tanh−1(1/λ) < ∆0/Tc (20)

which is shown as the red dotted line in Fig. 2.151

At T → 0, we find, directly from the gap equation, that the energy gap exponentially152

approaches its maximum value of ∆0,153

∆(T ) ≃ ∆0 − λT exp(−∆0

T
(1− 1

λ
)) (21)

which is similar to that of BCS.154

B. d-wave results155

Taking the limit of T → 0, we obtain the coupling parameter from the gap equation (Eq.156

12) (see Appendix A),157

λ =
π

2(1− sin 2θ) + 4θ cos 2θ
>

π

2
(22)

where θ is defined by cos 2θ = ω∗/∆0 within the range of 0 < θ < π/4. This indicates that158

CEH d-wave superconductors require even stronger correlations.159

We can also obtain the d-wave ratio of ∆0/Tc numerically from the gap equation using160

ω∗ = ∆(Tc) = ∆0 cos 2θ and compare it with the s-wave and BCS results, as shown in Fig.161

2 and also in Fig. 4 as a function of θ. The general trend of the d-wave ratio is similar to162

the s-wave one, though notably higher. However, the inset plot in Fig. 4 reveals that the163

d-wave ratio is not monotonic and has a minimum of about 3.0774 at θ ≈ 0.7184.164

Similar to the s-wave results, the normalized d-wave superconducting gap as a function165

of T/Tc is shown in Fig. 5. Again, it does not close at Tc which is contrary to the BCS166

prediction. Note that the temperature dependence of the BCS d-wave gap, unlike the s-wave167

case, differs greatly from the CEH predictions, even in the limit of λ → ∞ or θ = π/4. As168

a matter of fact, the distinction is so significant between BCS and CEH that measurements169

with decent experimental precision should be pursued.170
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FIG. 5. The ratios of ∆(T )/∆0 as a function of T/Tc are shown for d-wave CEH superconductivity.
The gap only closes at Tc when θ → π/4 or λ → ∞. However, the gap-vanishing BCS curve behaves
differently.

It is straightforward to calculate the temperature T0 > Tc where the d-wave supercon-171

ducting gap vanishes,172

T0 =
ω∗

2 tanh−1(π/(2λ))
(23)

which is similar to the s-wave result except for a larger lower bound on the coupling param-173
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eter (λ > π/2). A similar ratio can also be obtained,174

∆0/T0 = 2 tanh−1(1 + 2θ cos 2θ − sin 2θ)/ cos 2θ < ∆0/Tc (24)

which is plotted as the blue dotted line in Fig. 2. Like ∆0/Tc, this ratio has a minimum of175

about 3.027 at θ ≈ 0.662.176

The asymptotic behavior of the superconducting gap at T → 0 can be obtained as follows,177

∆ ≃ ∆0 −
T 2

θ sin(2θ) cos(2θ)∆0

(25)

which is derived by utilizing the following integration,178 ∫ π/4

0

dφ exp(−∆

T
| cos(2φ)− cos(2θ)|)

∣∣∣∣∣
T→0

=
T

∆sin(2θ)
. (26)

IV. ENTROPY AND SPECIFIC HEAT179

In the CEH superconducting phase, the entropy of the finite-temperature system can be180

expressed through the statistics of Bogoliubov quasi-particles,181

S = −2
∑
k

(f+ log f+ + f− log f−)

= −2
∑
k

(f+ log f+ + (1− f+) log(1− f+)) (27)

where f± represent the Fermi-Dirac distributions of the quasi-particles as in Eq. 9. By182

replacing the summation with an energy integration, we obtain for the simple s-wave case,183

S = 2

∫ ∆+ω∗

∆−ω∗
dϵρ(ϵ)

(
ϵ/T

1 + eϵ/T
+ log(1 + e−ϵ/T )

)
(28)

where ρ(ϵ) is the quasi-particle density of states. This entropy formula seems to be the184

same as the BCS one but only formally. The critical differences lie in ρ(ϵ) and the bounds185

of integration ±ω∗. In CEH, ρ(ϵ) = ρF , whereas in BCS, the density exhibits a singular186

behavior at the gap energy, reflecting their differences in the pairing mechanism. More187

significantly, the integration bounds in CEH demand more careful handling, unlike BCS, due188

to a drastically different dispersion relation in Eq. 5. Such differences are most effectively189

showcased in the following calculations of heat capacity.190

A. s-wave specific heat191

The specific heat for the CEH s-wave superconductors can be obtained from the entropy192

in Eq. 28 as follows,193

Csc = T
∂S

∂T
= 2TρF

∫ ∆+ω∗

∆−ω∗
dϵ

eϵ/T

(eϵ/T + 1)2

(( ϵ

T

)2
− ϵ

T

∂∆(T )

∂T

)
(29)
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FIG. 6. The temperature dependence of heat capacity Csc(T )/(TρF ) is shown for s-wave CEH
superconductivity. Cases with three different coupling parameters λ = 1.2, 1.5, 2 are presented.

which can be simplified as,194

Csc(T ) = 2TρF (s2(T )−
∂∆(T )

∂T
s1(T )) (30)

where the two auxiliary functions are defined as195

s1,2(T ) =

∫ (∆+ω∗)/T

(∆−ω∗)/T

dx
ex

(ex + 1)2
x1,2. (31)

The CEH s-wave specific heat for various λ values is shown in Fig. 6, where it exponen-196

tially approaches zero in the limit of T → 0,197

Csc(T ) → 2TρF

(
∆0 − ω∗

T

)2

e−(∆0−ω∗)/T (32)

and behaves similarly to the s-wave BCS superconductivity.198

To better understand the heat capacity jump at the critical temperature, we plot its peak199

value at Tc as a function of the coupling parameter λ in Fig. 7. It is evident that the second200

term contribution C∆̇ in Eq. 30 dominates the heat capacity at larger λ. The normal state201

electronic heat capacity, within the same energy shell ±ω∗, can be written as,202

CN(T ) = 2TρF

∫ ω∗/T

−ω∗/T

dx
ex

(ex + 1)2
x2 (33)

where, in the bounds of integration, ω∗/T = ∆0/(λT ) decreases rapidly as λ increases. The203

behavior of CN(Tc), as shown in Fig. 7, resembles that of normal metals only at very low λ204

values (still > 1), where ω∗/Tc remains large. It then drops rapidly to zero because ω∗/Tc205

approaches 2/λ asymptotically as λ → ∞. Note that, unlike in the case of BCS, the first206

term in Eq. 30 does not reduce to CN at Tc since the gap does not close at Tc or ∆(Tc) ̸= 0.207
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Fig. 7 demonstrates that optimal superconductivity for s-wave pairing favors relatively208

weaker correlations (λ ≲ 1.5). The specific capacity jump at Tc from the superconducting209

state to the normal state is more complicated in CEH. The normal state electronic heat210

capacity in BCS maintains a constant CN/T , giving rise to a fixed jump ratio of about 1.43211

for s-wave pairing. However, in CEH, this ratio varies depending on λ or the doping level212

and may reach about 3 at λ ∼ 1.5 as CN decreases. More complicatedly, the ω∗ energy shell213

may shrink so significantly at larger λ or higher doping levels that other energy bands could214

become accessible for electrons, causing an increase in CN and resulting in a smaller heat215

capacity jump at Tc.216

B. d-wave specific heat217

The d-wave specific heat can be similarly obtained as follows,218

Csc(T ) =
8TρF
π

(∫ π/4

0

dφd2(φ, T )−
∂∆

∂T

∫ π/4

0

dφd1(φ, T ) cos(2φ)

)
(34)

where the two integrand functions, similar to the s-wave case, are defined by219

d1,2(φ, T ) =

∫ (∆ cos(2φ)+ω∗)/T

(∆ cos(2φ)−ω∗)/T

dx
ex

(ex + 1)2
x1,2 (35)

and the derivative of the gap can be obtained by differentiating the gap equation,220

∂∆

∂T
=

∆

T
+

ω∗

T

4λg2(T )

π exp(−ω∗/T )− 8λ sinh(ω∗/T )g1(T )
(36)
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where the two auxiliary functions are given by221

g1(T ) =

∫ π/4

0

dφ
e∆cos(2φ)/T cos(2φ)

(e(∆ cos(2φ)+ω∗)/T + 1)(e∆cos(2φ)/T + eω∗/T )

g2(T ) =

∫ π/4

0

dφ
1− e2∆cos(2φ)/T

(e(∆ cos(2φ)+ω∗)/T + 1)(e∆cos(2φ)/T + eω∗/T )
. (37)

As presented in Fig. 8, the peak specific heat at T = Tc for d-wave superconductivity222

follows the trend of s-wave, though large heat capacity jumps are extended to larger θ / λ223

or higher doping levels. Again, compared to a constant jump ratio of about 0.95 for BCS224

d-wave, the normalized jump ratio in CEH varies (reaching ∼ 1.2 at λ = 2). The d-wave225

ratio is generally lower than the s-wave one due to a slower decrease in CN as θ and λ226

increase.227

One notable finding in CEH is its unique prediction of a non-zero linear term in the228

d-wave heat capacity at the zero-temperature limit, as shown in Fig. 9. This non-zero offset229

originates from the d2(φ, T ) term of Eq. 34 (see Appendix B),230

γ(0) ≡ Csc(T )

T

∣∣∣∣
T→0

=
8π

3

(π
4
− θ
)
ρF ̸= 0 (38)

which explains the “anomalous linear term” observed in the heat capacity of cuprates [23, 24].231

It may not approach zero even at the extreme overdoping limit where θ = π/4 or λ →232

∞. Assuming a constant four-fermion interaction strength, i.e., λ ∝ ρF , and taking into233

account Eq. 22, we see that γ(0) decreases as the doping level or λ increases, and we obtain234

its underdoping-to-overdoping ratio γ(0)UL/γ(0)OL = π2/4 ≈ 2.47 calculated at the two235

extreme doping limits, which agrees very well with the cuprate measurements [24, 25].236
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The next leading order at T → 0 in Fig. 9 is contributed from both terms (see Appendix237

B),238

Csc(T )

TρF
− γ(0)

ρF
≃
(
8π

3θ
+

14π3

15 tan 2θ

)
1

sin2 2θ

(
T

∆0

)2

(39)

where the first part within the parentheses is calculated from the d1(φ, T ) term and the239

second from the d2(φ, T ) term. This exactly explains the quadratic behavior observed in240

the heat capacity curve of C/T at T ≪ Tc in d-wave superconducting cuprates [26–28].241

V. DISCUSSIONS AND COMPARISONS WITH EXPERIMENTAL DATA242

The proposed CEH mechanism provides many unique predictions that are distinct from243

the well known BCS results. These differences have been discussed above in detail and are244

also summarized in Table I. In particular, CEH naturally explains the necessity of antiferro-245

magnetism and strong coupling in non-BCS superconductivity. Most strikingly, many of its246

predictions agree very well with existing experimental data on non-BCS superconductors,247

particularly cuprates and FeSCs. Several such examples will be illustrated below.248

CEH conducts current via relative motion and this may explain why flat bands are favored249

in high-Tc superconductivity. The key feature in CEH is the ω∗ energy shell, which could250

function as both the superconducting band for CEH pairs and an energy gap (closely related251

to the widely-recognized pseudogap) for normal state electrons. This ω∗ band may be one of252

the flat bands where center-of-mass motion is forbidden, making it ideal for the formation253

of antiferromagnetism and CEH pairs. For easier comparison with data below, we assume a254

simple linear relationship between ω∗ and the pseudogap temperature T ∗: ω∗ ∝ T ∗.255

In the undoped parent compound, ω∗ typically exceeds the superconducting gap ∆, which256

can disrupt the stability of CEH pairs with additional energy. Doping, however, plays a cru-257

cial role in reducing ω∗, making it below the level of ∆, and thereby facilitating the onset258
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TABLE I. Summary of comparisons of some major results between BCS and CEH. The results from
BCS are calculated in the weak-coupling limit and other extensions using stronger electron-phonon
couplings may differ.

Model BCS CEH
material averse to magnetism desirous of antiferromagnetism

mechanism Cooper pairs chiral electron-hole pairs
SC criteria no constraint on Debye ωD ω∗ < ∆(T )

symmetry s-wave d-wave s-wave d-wave

coupling
weak coupling strong coupling

λ ≪ 1 λ > 1 λ > π
2 , 0 < θ < π

4

E±
k = ±

√
ξ2k + |∆|2 ±

√
ξ2k + |∆cos 2φ|2 ξk ± |∆| ξk ± |∆cos 2φ|

gap equation 1
λ =

∫ ωD

0 dξ tanh(E+/2T )
E+

1
λ =

∫ 2π
0 dφ cos2 2φ

2π ×
Eq. 11 Eq. 12∫ ωD

0 dξ tanh(E+/2T )
E+

∆0 = 2ωDe
−1/λ 2.426ωDe

−2/λ λω∗ ω∗/ cos 2θ

Tc or T0 =
Tc = T0 Tc < T0

Tc = 1.134ωDe
−1/λ Tc = 1.134ωDe

−2/λ T0 =
ω∗

2 tanh−1(1/λ)
T0 =

ω∗

2 tanh−1(π/2λ)

∆0/Tc = 1.764 2.140 > 2 (Fig. 2) ≳ 3.077 (Fig. 4)
∆(Tc) ∆(Tc) = 0, gap closes at Tc ∆(Tc) = ω∗ ̸= 0, does not close at Tc

∆(T )
∆0

vs. T
Tc

dashed line in Fig. 3 dashed line in Fig. 5 Fig. 3 Fig. 5
specific heat Figs. 7-6 Figs. 8-9

C/T (T → 0)
exponentially linearly exponentially quadratically
approaches 0 approaches 0 approaches 0 to 8π

3 (π4 − θ)ρF ̸= 0

jump at Tc 1.43 0.95 varies with λ varies with θ

of superconductivity. Meanwhile, doping tends to increase the coupling parameter λ as the259

density of states in the ω∗ band rises due to unitarity or conservation of the number of quan-260

tum states in a compressed ω∗ band. High-pressure-induced superconductivity, investigated261

in various materials, may introduce similar effects by compressing the ω∗ band with external262

pressure.263

It have been observed in various cuprate superconductors that the ratio ∆0/Tc exceeds264

three. This ratio has been shown to undergo a dramatic increase with decreasing doping and265

approach a limit of three near maximum doping (see Fig. 3 of Ref. [29] and the references266

therein). This behavior aligns well with our d-wave prediction based on the new pairing267

mechanism as shown in Fig. 2. To further demonstrate this, a direct comparison between268

CEH predictions and experimental data for HgBa2CuO4+δ (Hg-1201) [30] is presented in Fig.269

10. A good fit to the experimental data is achieved using a simple λ − p parametrization270

discussed below. Furthermore, large ∆0/Tc ratios, consistent with CEH s-wave predictions,271

have also been observed in iron-based superconductors [12].272

It has been observed in various studies (e.g., [30–32]) that the non-BCS superconducting273

gap does not close at the critical temperature, exhibiting a behavior similar to that shown274

in Fig. 5. In particular, in Fig. 3 of Ref. [30], the trend of the temperature dependence275

closely resembles our results and also displays a similar deviation from the BCS prediction.276

Another piece of clear and convincing evidence comes from the detailed analysis of d-wave277

specific heat presented above, which is worth reiterating. CEH predicts a non-zero linear278
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agreement with the HgBa2CuO4+δ (Hg-1201) data [30], which are much higher than the BCS
weak-coupling limit value of 2.140.

term in heat capacity at T = 0 for d-wave superconductors, a phenomenon well observed in279

many cuprates [23–25]. Furthermore, the predicted quadratic temperature dependence in280

C/T near zero temperature is also in agreement with observations [26–28], in stark contrast281

to the BCS linear dependence.282

To make direct comparisons between CEH predictions and the wealth of data accumulated283

over decades of high-Tc superconductivity studies, it is necessary to establish a concrete284

relationship between the coupling parameter λ and the doping level parameter p. We will285

start with some rough yet simple estimates to facilitate direct comparisons to the data. For286

strongly correlated parent compounds like cuprates or FeSCs, it is reasonable to assume that287

the initial coupling parameter λ ∼ 1. Doping then increases the density of charge carrier288

states, effectively making λ larger. It has been observed that the carrier density increases289

very rapidly at very low doping levels and then more gradually at higher doping levels [33].290

At low doping levels or in the case of CEH s-wave superconductors, we can approximate this291

with the following λ− p relation292

λ = 1− 1

log(p/pm)
(40)

where pm is the maximum doping level corresponding to λ → ∞. For the example of an293

s-wave FeSC discussed below, we choose to adopt pm = 1/3.294

However, CEH d-wave superconductors require larger correlations, specifically, λ > π/2,295

which means that superconductivity will not occur until the doping reaches a minimum level296

p0. To describe d-wave superconductors, we can apply the following parametrization,297

p = p0 + a sin2 θ. (41)

For the comparison shown in Fig. 10, parameters of p0 = 0.08 and a = 0.4 are adopted.298
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Using the λ − p and θ − p relations given in Eqs. 40-41, we can compare the phase299

diagrams constructed from CEH to experimental data in two examples. The first example300

involves NaFe1−xCoxAs with experimental data taken from Refs. [34, 35]. Fig. 11 shows301

the results from CEH assuming that pm = 1/3 and ω∗ = 0.5T ∗. The superconducting phase302

and Tc values derived from s-wave CEH agree well with the data. One possible issue is that303

Tc appears moderately overestimated at extremely low doping levels (p ≲ 0.01), which could304

stem from the oversimplified parametrization in Eq. 40. The λ−p relation may require more305

nuanced treatment at extremely low doping levels where the density of states undergoes the306

most significant changes. Other parameters such as the superconducting gap ∆0 and the307

gap closing temperature T0 predicted by s-wave CEH are also depicted in Fig. 11.308

Another example is the phase diagram of La2−xSrxCuO4 (LSCO). In Fig. 12, a compar-309

ison between the measured LSCO data [36, 37] and the d-wave predictions from CEH (p =310

0.05+0.94 sin2 θ and ω∗ = 1.5T ∗) is presented. The superconducting phase, characterized by311

the well-known dome shape for cuprates, is well reproduced and CEH shows good agreement312

with both the data [36] and the universal Tc parametrization of Tc/T
max
c = 1−82.6(p−0.16)2313

[38] using Tmax
c = 38K for LSCO.314

The same θ − p relation applied in LSCO, along with ω∗ = 2.3T ∗, also performs equally315

well in predicting the phase diagram of YBCO, despite significantly higher T ∗ and Tc val-316

ues in YBCO. More systematic comparisons, especially to experimental data on ∆0 and317

T0, will provide more compelling evidence for CEH. Further comparisons with other non-318

BCS superconducting materials would offer more valuable insights into understanding these319

parametrization relations.320

Note that the T ∗ lines shown in both Figs. 11 and 12 do not agree with an alternative view321

where the T ∗ line could cross into the superconducting phase and end at a smaller critical322

doping point. This is because the pseudogap phase between the T ∗ and Tc lines is related323

to superconductivity, that is, the pseudogap is not an independent order competing with324

superconductivity in the CEH mechanism. It could possibly be understood as a short-range325
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antiferromagnetic order in the phase between T ∗ and T0, e.g., a liquid of antiferromagnetic326

singlet dimer states as proposed in the resonating valence bond theory [39]. When it enters327

the phase between T0 and Tc, these antiferromagnetic dimers could transition into CEH328

dimers due to the appearance of superconducting gap. However, these preformed CEH pairs329

could not superconduct owing to the condition of ω∗ > ∆(T ) in this phase, which could330

easily convert these pairs back to normal antiferromagnetic dimers. The long-range CEH331

order could only be established for unconventional superconductivity under the condition of332

ω∗ < ∆(T ) at T < Tc.333

VI. CONCLUSIONS AND OUTLOOK334

Using the new chiral electron-hole pairing mechanism, we provide a more comprehensive335

understanding of non-BCS superconductivity in a strongly correlated electron system. Our336

new predictions are remarkably consistent with numerous puzzling properties observed in337

cuprate and FeSC superconductors such as the unexpectedly large ∆0/Tc ratios, the absence338

of gap closure at Tc, the presence of a non-zero γ(0) term and a quadratic trend in the heat339

capacity ratio of C/T as T → 0 in cuprates, among others. Further measurements (e.g.,340

on T0) and systematic comparisons with experimental data across diverse material types341

will provide more stringent tests on the CEH mechanism. A better understanding of the342

ω∗ band and the λ-doping level relationship may help identify even more promising high-Tc343

superconducting materials in the near future.344
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Appendix A: d-wave λ− θ relation348

The d-wave gap equation (Eq. 12) can be rewritten as,349

∆(T ) =
4λT

π

∫ π/4

0

dφ log

(
e(∆ cos 2φ+ω∗)/T + 1

e∆cos 2φ/T + eω∗/T

)
. (A1)

As T → 0, the integrand becomes ∆cos 2φ/T if ∆cos 2φ < ω∗ and ω∗/T otherwise. By350

introducing a new parameter θ with351

cos(2θ) = ω∗/∆0 (A2)

where the range of θ is limited to 0 < θ < π/4, we obtain in the zero-temperature limit352

∆0 =
4λT

π

(∫ θ

0

dφ
ω∗

T
+

∫ π/4

θ

dφ
∆0 cos 2φ

T

)

=
4θ

π
λω∗ +

2(1− sin 2θ)

π
λ∆0 (A3)

which, by using Eq. A2, immediately leads to the d-wave λ− θ relation as given in Eq. 22.353

Appendix B: d-wave specific heat at T → 0354

The d-wave specific heat in Eq. 34 can be expressed as a sum of two terms: Csc = C2+C1355

where C2,1 involve the integration of the two functions d2,1(φ, T ), respectively. For both356

terms, the integration with respect to φ can be divided into two parts: from 0 to θ′ and from357

θ′ to π/4, where cos 2θ′ = ω∗/∆. For convenience, we introduce the following definitions,358

y± ≡ (cos 2φ± cos 2θ′)∆/T (B1)

hn(x) ≡
ex

(ex + 1)2
xn. (B2)

1. C1 contribution at T → 0359

First, we work with the C1 term where we can simplify the second part of the integral as360

follows,361 ∫ π/4

θ′
dφ cos 2φ

∫ y+

y−

dxh1(x) =

∫ π/4

θ′
dφ cos 2φ

(∫ y+

−y+

−
∫ −|y−|

−y+

)
dxh1(x)

=

∫ π/4

θ′
dφ cos 2φ

∫ y+

|y−|
dxh1(x) (B3)

because h1(x) is an odd function. By taking the limit of y+ → ∞ as T → 0 and the following362

integration,363 ∫ ∞

y

dxh1(x) = log(1 + ey)− yey/(ey + 1) ≡ j(y), (B4)
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where j(y) is odd as well, we can obtain the full integration as,364 ∫ π/4

0

dφ cos 2φ

∫ y+

y−

dxh1(x) =

(∫ θ′

0

∫ y+

y−

+

∫ π/4

θ′

∫ y+

|y−|

)
dφdx cos 2φh1(x)

=

(∫ θ′

0

+

∫ π/4

θ′

)
dφ cos 2φj(|y−|). (B5)

By a change of variable from φ to y−, we obtain for the first part,365 ∫ θ′

0

dφ cos 2φj(y−) =

∫ (1−cos 2θ′)∆/T

0

dy−j(y−)
T

2 tan 2φ∆

=
π2T

12 tan 2θ′∆
(B6)

where the main contribution arises from the vicinity of φ ∼ θ′, allowing us to approximate366

tan 2φ with tan 2θ′, and the upper limit of integration becomes ∞ as T → 0, allowing us to367

use the identity
∫∞
0

dyj(y) = π2/6. Likewise, the second part of the integral yields the same368

result.369

From Eq. 25, we can obtain the derivative of the gap,370

∂∆(T )

∂T
= − 2T

θ′ sin(2θ′) cos(2θ′)∆
. (B7)

Putting them all together, we can obtain the C1 contribution to the specific heat,371

C1

Tρf
=

8π

3θ′ sin2 2θ′

(
T

∆

)2

(B8)

which gives the first term in Eq. 39 by replacing θ′ and ∆ with θ′ = θ and ∆ = ∆0 at T = 0.372

2. C2 contribution at T → 0373

Similarly, contributions to the C2 term can be separated into three parts,374 ∫ π/4

0

dφ

∫ y+

y−

dxh2(x) =

(∫ θ′

0

∫ y+

y−

−
∫ π/4

θ′

∫ y+

|y−|
+

∫ π/4

θ′

∫ y+

−y+

)
dφdxh2(x)

≡ C ′
2a + C ′

2b + C ′
2c (B9)

because h2(x) is an even function.375

We can easily integrate out the last part by taking y+ → ∞ as T → 0 and
∫∞
−∞ dxh2(x) =376

π2/3,377

C ′
2c =

∫ π/4

θ′
dφ

∫ ∞

−∞
dxh2(x) =

π2

3
(
π

4
− θ′) (B10)

which gives the non-zero offset in Eq. 38.378

The first part of Eq. B9 can be worked out by changing the order of integration as follows,379

C ′
2a =

(∫ x1

0

∫ Tx/∆+cos 2θ′

cos 2θ′
+

∫ x2

x1

∫ 1

cos 2θ′
+

∫ x3

x2

∫ 1

Tx/∆−cos 2θ′

)
dxh2(x)

d cos 2φ

2 sin 2φ
(B11)
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where x1 = (1 − cos 2θ′)∆/T , x2 = 2 cos 2θ′∆/T , or vice versa, and x3 = (1 + cos 2θ′)∆/T .380

As T → 0, we have x1,2,3 → ∞, rendering the last two terms in the above integral negligible.381

The integration with respect to φ in the first term results in θ′ − cos−1(Tx/∆+ cos 2θ′)/2.382

Using the following expansion,383

cos−1(t+ cos 2θ) = 2θ − t

sin 2θ
− cos 2θt2

2 sin3 2θ
+O(t3), (B12)

we can simplify the integral as384

C ′
2a =

T

2 sin 2θ′∆

∫ ∞

0

dxh3(x) +
cos 2θ′

4 sin3 2θ

(
T

∆

)2 ∫ ∞

0

dxh4(x) +O(T 3). (B13)

The second part of Eq. B9 can be treated similarly as,385

C ′
2b = −

(∫ x4

0

dxh2(x)

∫ cos 2θ′

cos 2θ′−Tx/∆

+

∫ x2

x4

dxh2(x)

∫ cos 2θ′

Tx/∆−cos 2θ′

)
d cos 2φ

2 sin 2φ
(B14)

where x4 = cos 2θ′∆/T and again, only the first term contributes. Then it can be worked386

out as,387

C ′
2b = − T

2 sin 2θ′∆

∫ ∞

0

dxh3(x) +
cos 2θ′

4 sin3 2θ

(
T

∆

)2 ∫ ∞

0

dxh4(x) +O(T 3). (B15)

The linear terms in Eqs. B13 and B15 exactly cancel each other out. By summing up the388

two parts and using
∫∞
0

dxh4(x) = 7π4/30, we obtain the C2 contribution to the quadratic389

temperature dependence, which gives the second term in Eq. 39.390
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