It still feels like yesterday. Almost exactly four years ago, also around Chinese New Year, I finished my first paper (or to be exact, two) on the new mirror matter theory. Now I just finished my first invited review paper, which exactly details the original motivations on solving the puzzles of neutron lifetime in my first published paper. It feels like I just completed the circle. So many thanks for Dr. Ben Grinstein’s invitation. I’ve been trying to write a review on mirror matter theory and related experiments and observations for a long time. But it never came through. Ben’s invitation has really pushed me to finish this review paper earlier. It is not the full review paper I have imagined, but still a very important part of it. It focuses on the unique perspectives in the analysis of the neutron lifetime anomaly and the CKM unitarity issue, which have been mostly overlooked by the mainstream. It does not present the full picture and details of mirror matter theory. Instead, it gives the details of the phenomenological $n-n’$ oscillation model, and presents exactly how it can explain the above puzzles and how we can test its unique predictions in laboratory experiments.

Here is the paper: Neutron lifetime anomaly and mirror matter theory

abstract:

This paper reviews the puzzles in modern neutron lifetime measurements and related unitarity issues in the CKM matrix. It is not a comprehensive and unbiased compilation of all historic data and studies, but rather a focus on compelling evidence leading to new physics. In particular, the largely overlooked nuances of different techniques applied in material and magnetic trap experiments are clarified. Further detailed analysis shows that the “beam” approach of neutron lifetime measurements is likely to give the “true” beta-decay lifetime, while discrepancies in “bottle” measurements indicate new physics at play. The most feasible solution to these puzzles is a newly proposed ordinary-mirror neutron (n-n’) oscillation model under the framework of mirror matter theory. This phenomenological model is reviewed and introduced, and its explanations of the neutron lifetime anomaly and possible non-unitarity of the CKM matrix are presented. Most importantly, various new experimental proposals, especially lifetime measurements with small\slash narrow magnetic traps or under super-strong magnetic fields, are discussed in order to test the surprisingly large anomalous signals that are uniquely predicted by this new n-n’ oscillation model.