First anniversary of my mirror matter theory

Exactly one year ago, I posted my first paper about mirror matter theory on arXiv.org. I wanted a little celebration and therefore submitted my latest work  to arXiv yesterday. It is probably the most complete and astonishing of all – building a dynamic theory or staged models to describe the universe from the very beginning when the arrow of time started all the way to the Standard Model physics we know best about today.

The paper was supposed to show up on arXiv yesterday. Unfortunately, arXiv administrators decided to put it on hold and obviously ruined my anniversary celebration a little bit. It was a surprise to me as this is my first on-hold experience with arXiv. I don’t know what in my paper is so alarming to arXiv administrators or moderators. Maybe they regard it a crackpot? Or maybe this is just another example of over-regulation on the arXiv side. I just hope it won’t become another long ordeal like the ones I have been enduring with the journals.

New physics of mirror matter manifests in a topological way

Modern physicists are used to a perturbative way to solve or understand problems in modern physics. In particular, since the invention of the powerful Feynman diagram technique by Richard Feynman, particle physicists are so fond of this perturbation tool and can seldom talk about physics without showing some Feynman diagrams.

However, there indeed exist some fundamental physical processes that can not be described by Feynman diagrams. These processes are typically called nonperturbative or topological transitions that have been studied since the discovery of “instanton” about half a century ago.

Unfortunately, perturbation theory is planted in the minds of a lot of particle physicists so firmly that they could not think in other possible topological ways. This has to be part of the reasons why some editors and reviewers have been so easy to dismiss my works. It may also be causing other physicists jumping on and off the bandwagon of my theory.

Continue reading “New physics of mirror matter manifests in a topological way”

Most influential works and physicists on my mirror-matter theory

The first Christmas or Christian New Year has just arrived and the solar New Year Day of 2020 is coming since I posted my first paper on mirror matter theory on the Chinese New Year day (spring festival) of 2019. I’d like to take this moment to acknowledge some scientists and their works that have been the most influential during my studies on mirror matter theory. It is definitely from a personal perspective and far from a complete list. I apologize if some important works are omitted.

Scientists:

Tsung-Dao Lee (李政道) and Chen-Ning Yang (杨振宁) shared the 1957 Nobel Prize on their parity violation work [T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956)], which also opened the door to the studies of mirror symmetry.

Edward W. Kolb is a great cosmologist and his early work on mirror matter has fully turned my attention to mirror matter theory. The beautiful picture about mirror-matter in the early Universe is strikingly presented in his Nature paper [E. W. Kolb, D. Seckel, and M. S. Turner, Nature 314, 415 (1985)]; I leaned a lot from his classic textbook “the early universe” with M.S. Turner.

Continue reading “Most influential works and physicists on my mirror-matter theory”

Corrections to recent media coverage on the mirror matter theory

One piece of news regarding mirror matter studies was published in June, this year by New Scientist as a cover story titled “We’ve seen signs of a mirror-image universe that is touching our own”. I was interviewed and also quoted in this article. But I was not informed that the article was actually centered about Leah Broussard’s experiment at Oak Ridge national laboratory. As a matter of fact, I was not aware of it at all. The ironic part is that her experiment, as far as I understand, will not uncover any new physics if my new model is correct while I was quoted in the article like a theorist endorsing this and other similar experiments.

I was not aware of this article until one of my Chinese friends showed me the Chinese version of the article. Then I read the full English version from my institution’s library (the online version is not free). The article could have been a good one had the author replaced the experiments with, or at least focused on the ones discussed in the APS april meeting this year. Here are the links to the talks on neutron lifetime experiments at the meeting: session C14 and session D14. I wish I could have attended that meeting.

Continue reading “Corrections to recent media coverage on the mirror matter theory”

Converting dark matter search programs to mirror matter studies

In light of the newly developed model (M3 and SM3 ), if further confirmed, most effort of current dark matter search will be destined to failures. Indeed, there is nothing to detect if there is no direct interaction, however weak, between normal particles and dark (mirror) particles. This makes all the Weakly-Interacting-Massive-Particle-like (WIMP-like) or axion search programs to no avail. However, the advancement of the detection technology with the past efforts including those for the detection of neutrinos could be rekindled to a new life for the studies of mirror matter.

Continue reading “Converting dark matter search programs to mirror matter studies”

Consistent origin of matter-antimatter imbalance and dark matter in the early universe

This is an excerpt for media people or science journalists. A good story could be written from my two newly published papers (out of six). My personal goal would be to wake up some of the most relevant experimentalists. This should be a win-win situation and I hope it won’t fall on deaf ears. Here is the plain-English summary of the two published works (arXiv:1902.01837 & arXiv:1904.03835):

Matter-antimatter asymmetry and dark matter as two of the biggest puzzles in the Universe can be consistently and quantitatively understood under a new mirror-matter theory. The new theory assumes that there exist two parallel sectors of particles that share nothing but gravity and it leads to neutral particle oscillations because of slightly broken mirror symmetry. Specifically, neutron and kaon oscillations with new understanding of quark condensation and phase transition processes in the early Universe provide the necessary mechanism. The idea is that kaon oscillations first create a potential amount of matter-antimatter asymmetry at the stage of strange quark condensation. A new topological transition process (coined “quarkiton”) can then preserve the generated matter-antimatter asymmetry. Without such an asymmetry, we would not have lived in a universe of galaxies and stars. In the end, neutron oscillations convert most of the matter to mirror matter which corresponds to the dark matter we have observed today. Under the same framework, another so-called U(1) or strong CP problem that has baffled particle physicists for almost half a century is understood as well.

Continue reading “Consistent origin of matter-antimatter imbalance and dark matter in the early universe”

Paper on matter-antimatter imbalance (another M\(^3\) work) accepted for publication

Another paper for the study of baryon asymmetry of the universe based on the mirror-matter model (M3) has just been accepted for publication in Phys. Rev. D.

This is another piece of work that firmly establishes the connections between the new mirror-matter model and cosmology. It is also the bridge leading to the full-fledged extended Standard Model with Mirror Matter (SM3).

Continue reading “Paper on matter-antimatter imbalance (another M\(^3\) work) accepted for publication”

Supersymmetry and Mirror Symmetry

Nature’s supersymmetry (SUSY) is not what most physicists have thought about. It is not making a copy of all existing particles and giving these superparticles some fancy names like something-ino or s-otherthing.

The big mistake on SUSY has been to confuse some properties of SUSY with those of mirror symmetry which has not drawn deserved attention from the physics community. It is actually the mirror symmetry that makes a mirrored copy of particles in our known sector.

Continue reading “Supersymmetry and Mirror Symmetry”

Dark Energy and extended Standard Model with Mirror Matter (SM\(^3\))

The newly proposed phenomenological mirror-matter model (M3) has just been developed into a full-fledged theory – extended Standard Model with Mirror Matter (SM3). Dark energy is simply understood as the leftover vacuum energy due to the spontaneous mirror symmetry breaking.

Here is the link: https://arxiv.org/abs/1908.11838

Continue reading “Dark Energy and extended Standard Model with Mirror Matter (SM\(^3\))”